Books
Aruna Chakkirala

Interpretability and Explainability in AI Using Python

Demystify AI Decisions and Master Interpretability and Explainability TodayKey Features● Master Interpretability and Explainability in ML, Deep Learning, Transformers, and LLMs● Implement XAI techniques using Python for model transparency● Learn global and local interpretability with real-world examplesBook DescriptionInterpretability in AI/ML refers to the ability to understand and explain how a model arrives at its predictions. It ensures that humans can follow the model's reasoning, making it easier to debug, validate, and trust.Interpretability and Explainability in AI Using Python takes you on a structured journey through interpretability and explainability techniques for both white-box and black-box models.You’ll start with foundational concepts in interpretable machine learning, exploring different model types and their transparency levels. As you progress, you’ll dive into post-hoc methods, feature effect analysis, anchors, and counterfactuals—powerful tools to decode complex models. The book also covers explainability in deep learning, including Neural Networks, Transformers, and Large Language Models (LLMs), equipping you with strategies to uncover decision-making patterns in AI systems.Through hands-on Python examples, you’ll learn how to apply these techniques in real-world scenarios. By the end, you’ll be well-versed in choosing the right interpretability methods, implementing them efficiently, and ensuring AI models align with ethical and regulatory standards—giving you a competitive edge in the evolving AI landscape.What you will learn● Dissect key factors influencing model interpretability and its different types.● Apply post-hoc and inherent techniques to enhance AI transparency.● Build explainable AI (XAI) solutions using Python frameworks for different models.● Implement explainability methods for deep learning at global and local levels.● Explore cutting-edge research on transparency in transformers and LLMs.● Learn the role of XAI in Responsible AI, including key tools and methods.Table of Contents1. Interpreting Interpretable Machine Learning2. Model Types and Interpretability Techniques3. Interpretability Taxonomy and Techniques4. Feature Effects Analysis with Plots5. Post-Hoc Methods6. Anchors and Counterfactuals7. Interpretability in Neural Networks8. Explainable Neural Networks9. Explainability in Transformers and Large Language Models10. Explainability and Responsible AI     IndexAbout the AuthorsAruna Chakkirala a seasoned technical leader and currently serves as an AI Solutions Architect at Microsoft. She was instrumental in the early adoption of Generative AI and constantly strives to keep pace with the evolving domain. As a Data Scientist, she has built Supervised and Unsupervised models to address cybersecurity problems. She holds a patent for her pioneering work in community detection for DNS querying. Her technical expertise spans multiple domains, including Networks, Security, Cloud, Big Data, and AI. She believes that the success of real-world AI applications increasingly depends on well— defined architectures across all encompassing domains. Her current interests include Generative AI, applications of LLMs and SLMs, Causality, Mechanistic Interpretability, and Explainability tools.
445 printed pages
Original publication
2025
Publication year
2025
Have you already read it? How did you like it?
👍👎
fb2epub
Drag & drop your files (not more than 5 at once)